Phragmen-Lindelof Theorems for some non-linear elliptic partial differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Differentiability Theorems for Non - Linear Elliptic Equations
^ C O and Z)0(x) stand for ——^ ^ " ^ T » (bx ) . . . (o* ) y and Dz stands for all the derivatives Dz for i = \, . . . , N and 0 < |a| < mt (of course if |a | = 0 , Dz = z). Equations of the form (1 ) were discussed in my paper "Partial regularity theorems for elliptic systems" which appeared in the January 1968 issue of the Journal of Mathematics and Mechanics [17] where it was assumed that th...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملSome A Posteriori Error Estimators for Elliptic Partial Differential Equations
We present three new a posteriori error estimators in the energy norm for finite element solutions to elliptic partial differential equations. The estimators are based on solving local Neumann problems in each element. The estimators differ in how they enforce consistency of the Neumann problems. We prove that as the mesh size decreases, under suitable assumptions, two of the error estimators a...
متن کاملSibson and non-Sibsonian interpolants for elliptic partial differential equations
The Natural Element Method (NEM) is a meshless Galerkin method which has shown promise in the area of computational mechanics. In earlier applications of NEM [1–3], natural neighbor (Sibson) coordinates [4] were used to construct the trial and test functions. Recently, Belikov and co-workers [5] proposed a new interpolation scheme (non-Sibsonian interpolation) based on natural neighbors. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1973
ISSN: 0022-247X
DOI: 10.1016/0022-247x(73)90279-5