Phragmen-Lindelof Theorems for some non-linear elliptic partial differential equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Differentiability Theorems for Non - Linear Elliptic Equations

^ C O and Z)0(x) stand for ——^ ^ " ^ T » (bx ) . . . (o* ) y and Dz stands for all the derivatives Dz for i = \, . . . , N and 0 < |a| < mt (of course if |a | = 0 , Dz = z). Equations of the form (1 ) were discussed in my paper "Partial regularity theorems for elliptic systems" which appeared in the January 1968 issue of the Journal of Mathematics and Mechanics [17] where it was assumed that th...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

Some A Posteriori Error Estimators for Elliptic Partial Differential Equations

We present three new a posteriori error estimators in the energy norm for finite element solutions to elliptic partial differential equations. The estimators are based on solving local Neumann problems in each element. The estimators differ in how they enforce consistency of the Neumann problems. We prove that as the mesh size decreases, under suitable assumptions, two of the error estimators a...

متن کامل

Sibson and non-Sibsonian interpolants for elliptic partial differential equations

The Natural Element Method (NEM) is a meshless Galerkin method which has shown promise in the area of computational mechanics. In earlier applications of NEM [1–3], natural neighbor (Sibson) coordinates [4] were used to construct the trial and test functions. Recently, Belikov and co-workers [5] proposed a new interpolation scheme (non-Sibsonian interpolation) based on natural neighbors. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1973

ISSN: 0022-247X

DOI: 10.1016/0022-247x(73)90279-5